skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Durr, Nicholas_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Poor access to eye care is a major global challenge that could be ameliorated by low-cost, portable, and easy-to-use diagnostic technologies. Diffuser-based imaging has the potential to enable inexpensive, compact optical systems that can reconstruct a focused image of an object over a range of defocus errors. Here, we present a diffuser-based computational funduscope that reconstructs important clinical features of a model eye. Compared to existing diffuser-imager architectures, our system features an infinite-conjugate design by relaying the ocular lens onto the diffuser. This offers shift-invariance across a wide field-of-view (FOV) and an invariant magnification across an extended depth range. Experimentally, we demonstrate fundus image reconstruction over a 33°FOV and robustness to ±4D refractive error using a constant point-spread-function. Combined with diffuser-based wavefront sensing, this technology could enable combined ocular aberrometry and funduscopic screening through a single diffuser sensor. 
    more » « less